Деформационные швы

Деформационные швы

Страница 5 из 28

1.17. Расстояния между температурно-усадочными швами в бетонных и железобетонных конст­рукциях из обычного и жаростойкого бетонов должны устанавливаться расчетом. Указанный рас­чет допускается не выполнять для конструкций из обычного и жаростойкого бетонов, если принятое расстояние между температурно-усадочными швами не превышает величин, указанных в табл. 4, в которой наибольшие расстояния между температурно-усадочными швами даны для бетонных и железо­бетонных конструкций с ненапрягаемой и с предварительно напряженной арматурой, к конструкциям которых предъявляются требования 3-й категории трещиностойкости, при расчетной зимней температуре наружного воздуха минус 40 °С, относительной влажности воздуха 60 % и выше и высоте колонн 3 м.

Таблица 4

Примечания: 1. Для железобетонных конструкций (поз.

2), расчетная температура внутри которых не превышает 50 °С, расстояния между температурно-усадочными швами при расчетной зимней температуре наружного воздуха минус 30, 20, 10 и 1 °С увеличивают соответственно на 10, 20, 40 и 60 % и при влажности наружного воздуха в наиболее жаркий месяц года ниже 40, 20 и 10 % — уменьшают соответственно на 20, 40 и 60 %. Для промежуточных значений температуры и влажности наружного воздуха указанные выше увеличения и уменьшения расстояний между температурно-усадочными швами определяют по интерполяции.

2. Для железобетонных каркасных зданий (поз. 2 а, б, г) расстояния между температурно-усадочными швами уве­личивают при высоте колонн 5 м — на 20 %, 7 м — на 60 % и 9 м — на 100 %. Для промежуточных значений высот увеличение расстояний между температурно-усадочными швами определяют по интерполяции. Высоту колонн определяют: для одноэтажных зданий — от верха фундамента до низа подкрановых балок, а при их отсутствии — до низа ферм или балок покрытия; для многоэтажных зданий — от верха фундамента до низа балок первого этажа.

Для железобетонных каркасных зданий (поз. 2 а, б, г) расстояния между температурно-усадочными швами определены при отсутствии связей либо при расположении связей в середине температурного блока.

4. Расстояния между температурно-усадочными швами в сооружениях и тепловых агрегатах с расчетной температурой внутри 70, 120, 300, 500 и 1000 °С уменьшают соответственно на 20, 40, 60, 70 и 90 %. Для промежуточных значений температуры указанное уменьшение следует определять интерполяцией.

» Пред. — След. «

СНиП 2.03.04-84 БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ, ПРЕДНАЗНАЧЕННЫЕ ДЛЯ РАБОТЫ В УСЛОВИЯХ ВОЗД.

«1. ОСНОВНЫЕ ПОЛОЖЕНИЯ»

«ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ»

«При расчете по прочности, деформациям, а также раскрытию и закрытию трещин»

«Расстояния между температурно-усадочными швами»

«ДОПОЛНИТЕЛЬНЫЕ УКАЗАНИЯ ПО ПРОЕКТИРОВАНИЮ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫХ КОНСТРУКЦИЙ»

«ДЕФОРМАЦИИ И УСИЛИЯ ОТ ВОЗДЕЙСТВИЯ ТЕМПЕРАТУРЫ»

«Для участков железобетонного элемента.

где в растянутой зоне образуются трещины

«

«ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУР В СЕЧЕНИЯХ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ»

«2. МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ. БЕТОН»

«РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ БЕТОНА»

«АРМАТУРА»

«3. РАСЧЕТ ЭЛЕМЕНТОВ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ПЕРВОЙ ГРУППЫ. РАСЧЕТ БЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОЧНОСТИ»

«РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОЧНОСТИ. Расчет по прочности сечений, нормальных к продольной оси элемента»

«Расчет сечений, наклонных к продольной оси элемента, на действие поперечной силы»

«Расчет сечений, наклонных к продольной оси элемента, на действие изгибающего момента»

«РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ НА ВЫНОСЛИВОСТЬ»

«4. РАСЧЕТ ЭЛЕМЕНТОВ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ВТОРОЙ ГРУППЫ РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО ОБРАЗОВАНИЮ ТРЕЩИН»

«Расчет по образованию трещин, наклонных к продольной оси элемента»

«РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО РАСКРЫТИЮ ТРЕЩИН»

«Расчет по раскрытию трещин, наклонных к продольной оси элемента»

«РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО ЗАКРЫТИЮ ТРЕЩИН»

«РАСЧЕТ ЭЛЕМЕНТОВ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ДЕФОРМАЦИЯМ»

«5. КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ»

«ПРОДОЛЬНОЕ АРМИРОВАНИЕ ЭЛЕМЕНТОВ»

«ОТДЕЛЬНЫЕ КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ»

«ТРЕБОВАНИЯ, УКАЗЫВАЕМЫЕ В ПРОЕКТАХ»

«Приложения»

Температурные и осадочные швы

Для предотвращения деформаций в конструкциях их разделяют на отсеки (по длине) вертикальными зазорами – деформационными швами.

Необходимость устройства таких швов определяется внешними условиями и геометрическими параметрами конструкции.

При любой выбранной системе перевязки возведение стены начинают с кладки углов. Важно устроить перевязку швов в углах не только таким образом, чтобы соблюдался выбранный рисунок перевязки в наружных верстах обеих пересекающихся стен, но и так, чтобы перевязка была выполнена с максимальным перекрытием швов.

По своему назначению деформационные швы бывают температурными и осадочными. Расположение деформационных швов обязательно указывают в проекте.

Осадочные швы

Осадочные швы устраивают для предотвращения неравномерной осадки конструкции по длине. Эти швы делят здание или сооружение на отсеки по всей высоте конструкций: от подошвы фундамента до карниза. Фундамент, разделенный на отсеки осадочным швом, называют разрезным. Устройство осадочного шва в кладке фундамента и стены выглядит по-разному (рис. 34).

Рисунок 34. Устройство осадочного шва в кирпичной кладке: а) фундамент (план); б) стена (план); в) продольный разрез по фундаменту и стене; 1 – кладка фундамента; 2 – кладка стены; 3 – осадочный шов; 4 – шпунт; 5 – зазор под шпунтом для осадки

Шов должен быть перпендикулярным стене или фундаменту. В месте шва кирпичи не перевязывают друг с другом, вместо этого устраивают прокладку из гидроизоляционного материала в два – три слоя (толь, рубероид, стеклоткань и т. д.). Шов в фундаменте выполняют прямым, в стене – со шпунтом (выступом с одной стороны шва и впадиной с другой стороны). Толщина шпунта составляет обычно половину кирпича, реже – четверть кирпича. Над обрезом фундамента под шпунтом оставляют зазор высотой в 1–2 кирпича (ряда) кладки для предотвращения давления от шпунта на кладку фундамента в случае неравномерной осадки. Все стыки между кладкой фундамента и кладкой стены при этом должны быть герметичными для защиты стены от проникновения влаги из фундамента.

Если фундамент выполнен из другого материала (например, железобетона), принципы устройства осадочного шва не меняются.

Толщина осадочного шва в кирпичной кладке должна составлять 10–20 мм, поэтому устройство швов не влияет на изменение длины здания (он просто заменяет собой часть вертикальных швов кладки).

С наружной стороны стен осадочные швы заделывают просмоленной паклей, силиконовым герметиком или специальным уплотнителем. Причем первый вариант (с просмоленной паклей) малоэффективен, поэтому при возможности следует выбирать другой вариант. С наружной стороны фундамента устраивают глиняный замок или другой вариант гидроизоляции.

Необходимость в устройстве осадочных швов возникает в нескольких случаях.

1. Примыкание новой стены к старой. В этом случае шов может быть устроен без шпунта, поскольку вырезать паз в старой стене – трудоемкое занятие.

2. Примыкание одной части здания к другой: например, когда веранда или крыльцо примыкает к основной части здания, и фундамент под пристройку может быть устроен с меньшим расходом материалов (меньшего сечения). При этом осадка крыльца и основной части здания будет разной, и при отсутствии осадочного шва могут возникнуть трещины и другие деформации кладки.

3. Строительство на грунтах с неравномерной осадкой. О таком свойстве грунтового основания можно судить по имеющимся на участке постройкам, поверхности земли без обработки (по ней можно увидеть ярко выраженную осадку грунта) или геологическим изысканиям. Если нет возможности определить состояние грунта по последнему варианту, прибегают к двум первым. Важно помнить, что трещины в постройках могут быть вызваны не только неравномерной осадкой грунтового основания, но и ошибками, допущенными в проектировании (неправильным расчетом фундамента, отсутствием осадочных швов в стене большой длины и т. д.). Однако если здания поблизости имеют трещины, лучше при возведении новой конструкции в любом случае предусмотреть в ней осадочные швы.

Температурные швы

Температурные (температурно-усадочные) швы защищают здание или сооружение от деформаций (трещин, разрывов кладки, перекосов, сдвигов кладки по швам), связанных с изменением температуры воздуха и самих конструкций. При пониженных температурах каменная кладка имеет свойство сжиматься, а в жару – расширяться. Так, на каждые 10 м длины кирпичная конструкция при изменении температуры с 20 °C до –20 °C сокращается в размерах на 5 мм. Кроме того, перепад температур может возникать в различных частях здания.

Температурные швы делят здание на отсеки по всей высоте стен, не включая фундамент. То есть, в отличие от осадочных швов, температурными швами фундамент не разделяют. Устройство температурного шва в кирпичной стене аналогично устройству осадочного: в виде шпунта с прослойкой изоляционного материала и заделкой герметиком с наружной стороны стены. Герметик для заделки температурного шва должен быть рассчитан на все температуры, возможные при эксплуатации здания или сооружения.

Толщина температурного шва в кирпичной кладке должна составлять 10–20 мм. Если кладку ведут при температуре воздуха 10 °C и выше, толщина шва может быть уменьшена.

Необходимость в устройстве температурных шов возникает при большой длине кирпичных стен и при значительных перепадах температуры воздуха между зимним и летним периодами года. Строительные нормы и правила (СНиП II-22-81 «Каменные и армокаменные конструкции») устанавливают максимально допустимые расстояния между температурными швами в кирпичных стенах. Эти расстояния зависят от средней температуры наружного воздуха наиболее холодной пятидневки года, вида кирпича и марки раствора. В наиболее сложных климатических условиях максимально допустимое расстояние между температурными швами в отапливаемых строениях в кладке из керамического кирпича составляет 50 м, в кладке из силикатного кирпича – 35 м. Поскольку стены индивидуальных строений редко достигают такой длины, температурные швы в них практически не устраивают. Для неотапливаемых закрытых построек максимальная длина стены без температурных швов может составлять: в кладке из керамического кирпича – 35 м, в кладке из силикатного кирпича – 24,5 м. Для не отапливаемых открытых строений (например, кирпичных заборов) эти нормативные величины соответственно равны 30 м и 21 м.

При необходимости устройства в здании как осадочных, так и температурно-усадочных швов их совмещают и устраивают деформационный шов (или несколько шов) универсального назначения, с разрезкой конструкций по всей высоте (от подошвы фундамента до верха карниза).

Деформационные швы

Деформационный шов – это шов шириной не менее 20 мм, разделяющий здание на отдельные отсеки. Благодаря такому рассечению каждый отсек здания получает возможность независимых деформаций.

В зависимости от назначения деформационные швы разделяются на три основных типа:

– температурно-усадочные швы устраивают во избежание образования трещин и перекосов в наружных стенах зданий из-за перепадов температур воздуха снаружи и внутри здания.

Швы данного типа рассекают конструкции только наземной части здания – стены, перекрытия, покрытие и обеспечивают независимость их горизонтальных перемещений относительно друг друга. Фундаменты и другие подземные части здания при этом не рассекаются, т. к. перепады температур для них меньше и деформации не достигают опасных величин.

Расстояния между температурно-усадочными швами назначаются в зависимости от климатических условий места строительства и материала наружных стен здания. Например, в жилых зданиях это расстояние составляет 40 ¸ 100 м при кирпичных стенах и 75 ¸ 150 м при стенах из бетонных панелей (чем ниже температура наружного воздуха в месте строительства здания, тем меньшее расстояние назначается между деформационными швами). Отсек здания, расположенный между двумя температурно-усадочными швами или между торцом здания и швом называется температурным отсеком или температурным блоком;

– осадочные швы предусматривают в тех случаях, когда ожидается неодинаковая и неравномерная осадка смежных частей здания. Такая осадка может происходить при перепадах высот отдельных частей здания более 10 м, при различных нагрузках на основание, а также при разнородных грунтах под фундаментами.

Рис. 3.67. Схемы устройства деформационных швов в зданиях:

а – температурно-усадочный;

б – осадочный:

1 – надземная часть здания;

2 – подземная часть (фундамент);

3 – деформационный шов

Осадочные швы расчленяют по вертикали все конструкции здания, включая его подземную часть. Это позволяет обеспечить самостоятельную осадку отдельных объемов здания.

Осадочные швы обеспечивают не только вертикальные, но и горизонтальные перемещения расчлененных частей, поэтому их можно совмещать с температурно-усадочными швами. Данный тип деформационных швов называется температурно-осадочными;

– антисейсмические швы предусматривают в зданиях, располагаемых в сейсмоопасных районах. Антисейсмический шов так же, как и осадочный шов, расчленяет здание по всей высоте (надземную и подземную части) на отдельные отсеки, представляющие собой самостоятельные устойчивые объемы, что обеспечивает их независимую осадку.

На рис. 3.67 показаны схемы устройства деформационных швов в зданиях.

Деформационные швы в облицовочной кладке

7.1. Общие указания по армированию и назначению деформационных швов в облицовочной кладке, приведенные ниже, приняты по СП 15.13330.2012 . Метод расчета — по СТО 36554501-013–2008 .

7.2. Армирование облицовочной кладки, соединенной гибкими связями с внутренними слоями стены,

при поэтажном опирании следует выполнять с учетом следующих положений: — рекомендуется

использовать армирующие сетки с двумя продольными стержнями. Поперечная арматура должна назначаться конструктивно из арматуры диаметром с шагом . Диаметр продольной стальной арматуры в сетках рекомендуется принимать не менее и не более ; — наибольшие величины горизонтальных растягивающих напряжений действуют в нижней трети стены, т.е. на высоте от опоры около (при высоте этажа ). Армирование подбирается из расчета кладки лицевого слоя на температурно-влажностные воздействия (см. 7.5). Выше армирование выполняется конструктивно теми же сетками, что и в нижних рядах, но с более редким по высоте шагом (но не реже, чем через ). Независимо от результатов расчетов должно выполняться конструктивное армирование кладки лицевого слоя сетками, располагаемыми с шагом не более на всю высоту стены; — независимо от результатов расчетов на углах должно выполняться конструктивное армирование кладки лицевого слоя Г-образными сетками, располагаемыми с шагом не более на всю высоту стены, — Г-образные сварные сетки должны устанавливаться на длину не менее от угла или до вертикального деформационного шва, если он расположен ближе. На прямолинейных участках допускается укладывать сетки внахлест. Длина перехлеста должна составлять не менее .

7.3. В облицовочной кладке устраиваются вертикальные и горизонтальные деформационные швы.

7.4. Горизонтальные швы устраиваются в несущих многослойных стенах со средним слоем из эффективного утеплителя — в облицовочном кирпичном слое, в ненесущих стенах — по всей толщине стены. Горизонтальные деформационные швы во внутреннем и наружном слоях ненесущих многослойных стен следует выполнять в уровне опорных конструкций (между вышележащей конструкцией и верхним рядом кладки).

7.5. Горизонтальные швы по высоте здания в облицовке несущих многослойных стен со средним слоем из эффективной теплоизоляции допускается устраивать следующим образом: — первый шов — под перекрытием 2-го этажа; — далее поэтажно, под плитой монолитного железобетонного перекрытия и под консольной балкой, устанавливаемой под сборной железобетонной плитой перекрытия. Опорой облицовки над деформационным швом должен служить горизонтальный элемент, закрепленный к несущему слою стены или перекрытию. В зданиях высотой до четырех этажей (до ) допускается устраивать облицовочную кладку без горизонтальных деформационных швов на всю высоту здания.

7.6. Вертикальные температурно-деформационные швы устраиваются в лицевом слое многослойных наружных стен, отделенных от основного слоя стены. Вертикальные температурно-деформационные швы устраиваются также в том случае, если в конструкции стены не предусмотрена воздушная прослойка между слоем теплоизоляции и облицовкой

7.7. Рекомендуемые максимальные расстояния между вертикальными температурными швами для прямолинейных участков стен составляют для стен южной и западной ориентации и для стен северной и восточной ориентации. Вертикальные швы на углах здания следует располагать на расстоянии 250–500 мм от угла по одной из сторон либо непосредственно на стыке плоскостей. При необходимости увеличения расстояния между температурными швами требуется проведение расчетов температурных деформаций с учетом конструктивных особенностей стен, конструкции здания, ориентации его по сторонам света и климатических условий по п. 7.8.

Расчет температурных деформаций и прочности кладки лицевого слоя на действие горизонтальных растягивающих усилий следует проводить по , Приложение 11 и , разделы 2 и 5.

7.9. Ширина вертикальных деформационных швов принимается конструктивно 10–20 мм, но не менее двойной величины расчетной годовой амплитуды температурных деформаций ограниченных деформационными швами фрагментов кладки. Конфигурация вертикального деформационного шва может быть линейной и зубчатой (в форме разрыва кладки вертикальной штрабой). Толщина горизонтальных деформационных швов принимается конструктивно 20–30 мм, но не менее двойной величины расчетного прогиба перекрытия, разграничивающего смежные по вертикали фрагменты кладки. Деформационные швы в облицовочной кладке следует на глубину не менее с наружной стороны заполнять атмосферостойким нетвердеющим герметиком. По архитектурным соображениям цвет герметика рекомендуется выбирать близким к цвету кладочного раствора.

деформационный шов узел

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *