Автомобильное зарядное устройство

Автомобильное зарядное устройство

Что такое аккумулятор и зачем он нужен?

Этот прибор представляет собой устройство, которое выступает в роли «хранителя» энергии, причём хранится она в химической форме, она впоследствии может быть использована для питания систем машины. Это может произойти в том случае, когда два различных металла, находясь в растворе кислоты, начинают вырабатывать электрическое напряжение.
Аккумулятор нужен на автомобиле для производства пуска двигателя и питания различного электронного оборудования, которого всё больше и больше становится на современных автомобилях. Этот прибор во время движения машины подзаряжается от генератора, однако периодически, особенно в холодное время, он нуждается в зарядке стационарным зарядным устройством.
В процессе эксплуатации автомобиля АКБ, как и остальные агрегаты, нуждается в систематическом контроле и обслуживании. Следует следить за уровнем электролита в банках АКБ, а также проверять его плотностью. Для центральных регионов РФ и большинства стран СНГ, её величина должна быть равна 1,27 г/см3. Для районов с холодным климатом она должна быть несколько выше, иначе возникнут трудности с запуском мотора в холодное время.

Почему батарея не заряжается?

Для зарядки АКБ используют различные типы ЗУ. Они могут быть автоматическими, регулируемыми и нерегулируемыми. При правильном использовании их, процесс зарядки может продолжаться от 12 до 15 часов. Однако в некоторых случаях он может по разным причинам отсутствовать, рассмотрим эти причины.
Виновником могут выступать как зарядное устройство, так и аккумуляторная батарея. В первую очередь следует убедиться в работоспособности ЗУ. Такие приборы заводского изготовления имеют индикаторы подключения в электрическую сеть в виде лампочки или светодиода, а также предохранители на входе и выходе прибора. Если индикатор сети светится, а заряда нет, проверьте предохранители на выходе.

Иногда проблемы заключаются в неисправности вилки на сетевом проводе или в проводах, подключаемых к аккумулятору. Если после всех проверок оказалось, что зарядное устройство в порядке, следует провести обследование аккумуляторной батареи. Имеется целый ряд неисправностей, из-за которых будет отсутствовать заряд АКБ:

  • Повышение саморазряда аккумулятора не позволяет получать полноценный заряд. Это может произойти из-за загрязнения поверхности батареи. Использование «плохой» дистиллированной воды также приводит к саморазряду батареи.

    Можно попробовать полностью разрядить её, а затем снова зарядить, перед этим следует полностью заменить электролит;

  • Разрушение пластин батареи в большей части приводит к появлению короткого замыкания внутри прибора, это не позволит получить требуемый заряд;
  • Сильное окисление клемм АКБ, его можно устранить очисткой их от окислов (см. статью «Чем смазать клеммы аккумулятора»);
  • Перезаряд высоким напряжением приводит к перегреву аккумулятора, а вследствие этого происходит коробление пластин, поэтому заряд будет невозможен.

Может случиться и так, что внешних повреждений не замечено, а заряд отсутствует. Это может произойти когда срок службы АКБ подошёл к концу. Как видите причин не так много. Мы постарались рассказать, почему аккумулятор не заряжается от зарядного устройства. Тщательно соблюдайте все правила по эксплуатации и обслуживанию этого прибора, тогда такие проблемы обойдут вас стороной.

Современные мобильные девайсы уже незаменимо вошли в нашу жизнь. Прежде всего, мы говорим о телефонах и планшетах. Мы пользуемся ими везде, дома, на улице, в машине. В машине к ним добавляются еще навигаторы, видеорегистраторы и т.д. А что надо для нормальной работы этих приборов? Конечно питание, ведь любой, даже очень хороший аккумулятор «сядет», в конце концов.
Можно купить готовое зарядное устройство USB для всего того, что мы используем в машине. Но здесь могут быть проблемы с количеством гнезд, с мощностью и т.д. Как правило,мощность зарядного устройства ограничивается током 0,5 А, хоть на многих и написано 1 А, но выдержать такой ток они не в состоянии.
А что касается моего частного случая, так данное зарядное устройство, которое по сути является стабилизатором напряжения на микросхеме 7805, было применено для того, чтобы спрятать его под панелью приборов. В итоге, запитав его от прикуривателя и спрятав под панель приборов, были выведены лишь только штекеры mini USB на панель приборов, для навигатора и видеорегистратора. Это позволило обеспечить питанием гаджеты, при этом оставить не занятыми розетки прикуривателя. А быть может самое главное, это избавиться от проводов, которые мешались под рукой и от их не эстетического вида.

Итак, в нашей статье мы расскажем об альтернативе, о самостоятельном изготовлении USB зарядного устройства для автомобиля на базе микросхемы — стабилизатора 7805.

Как сделать зарядное USB устройств в автомобиле своими руками на 1,5 Ампера (Вариант 1)

В качестве «сердца» нашего зарядного устройства будет использован стабилизатор напряжения серии L7805 (ток 1 А) или его аналог L7805CV (ток 1,5 А). На самом деле применяемых аналогов может быть великое множество. В принципе, вся серия микросхем 7805 подойдет для этого. Об аналогах подробнее мы расскажем чуть позже.
Сама электрическая схема подключения стабилизатора проста, она аналогична стабилизатору питания, про который мы рассказывали в другой нашей статье «Стабилизатор питания в автомобиле на 12 вольт». Можно сказать, что это микросхемы собратья, только напряжения стабилизации у них разное.

Собрать все можно как навесным монтажом, так и на плате. Можно на обычной простой универсальной монтажной плате. Для того, чтобы микросхема смогла развить свой максимальный ток питания, ее необходимо поставить на радиатор. В нашем случае радиатор взят от компьютерного процессора.

Сами микросхемы — стабилизаторы могут выпускаться в различных корпусах. Возможные варианты корпусов и применяемых аналогов приведены на рисунке ниже.

В нашей сборке применен корпус ТО-220… Возможно применение и микросхем с индексом KIA 7805. Более подробный Data sheet на эти микросхемы можно посмотреть ЗДЕСЬ.

Зарядное устройство в машине на 5 вольт для смартфона, навигатора, видеорегистратора, планшета построенное по принципу ШИМ модуляции (USB) на 4 Ампера (Вариант 2)

Однако эпопея с зарядным устройством на этом не закончилась. Опять же из-за банальной причины, когда для потребителей не хватает выдаваемой мощности, тока питания, что по сути одно и тоже, при условии постоянного напряжения бортовой сети в машине, так как величины эти будут прямо пропорциональны.
Так вот, при длительной совместной эксплуатации навигатора и видеорегистратора, одна микросхема была не в состоянии «вытянуть» питание этих двух устройств, даже при установленном радиаторе. В итоге, она перегревалась и кратковременно отключалась. Навигатор при этом «матерился» на отключение питания.
Здесь видится два решения проблемы. Первый, это «городить огород» и делать параллельные схемы, на каждую из которых будут «навешаны» свои потребители. Скажем на одну видеорегистратор, на вторую навигатор. По сути, на фото выше, где на одном радиаторе смонтированы две микросхемы, так и сделано. Однако хорошо если этим все и ограничится, а если понадобиться подключить смартфон, планшет, еще что-то… Здесь никак не обойтись без более серьезных токов, а значит и без альтернативных вариантов. Таким альтернативным вариантом станет применения микросборки с ШИМ модуляцией. Не буду долго и подробно объяснять что это такое, но принцип всего этого основан на том, что ток выдается на нагрузку не постоянно, а с очень высокой частотой. В итоге, появляется возможность снизить нагрев микросхемы, за счет тех самых периодов, когда она «отдыхает», а нагрузка при такой высокой частоте воспринимает питание как постоянное, хотя оно не является таковым…
Так вот, такая схема не потребует больших радиаторов для отвода тепла, при этом будут обеспечены довольно высокие токи. В общем, все будет так, как нам и надо. Именно о таком варианте далее. Для снижения напряжения использована микросхема, катушка индуктивности и элементы для обвязки. Микросборка имеет обозначение KIS3R33S,

…ее монтаж можно выполнить по схеме из Datasheet. Однако для по умолчанию при такой обвязке она имеет выходное напряжение в 3,3 вольта, нам же для USB потребуется 5 вольт.

В этом случае необходимо будет подобрать резисторы R1, R2. Таблица с рекомендуемыми номиналами резисторов, от которых зависит напряжение питания, также взята из Datasheet. Эта особенность изменять напряжение подбором резисторов, делает это устройство универсальным помощником при необходимости питать нагрузку не только напряжение 5 вольт как для USB.

Надо отметить, что это устройства уверенно держит нагрузку с потребляемым током в 3А, а пиковые показатели могут достигать и 4А. Если собирать такое устройство лень, некогда или вы не сможете это сделать, то можно приобрести такую сборку за цену порядка 2 долларов на всем известных площадках, интернет — магазинах.

Надо сказать, что такой китайский преобразователь напряжения KIS-3R33S (MP2307) довольно неплох для своей цены, при этом способен выдавать высокие токи, о чем мы уже знаем, до 4А. Это значит, что такая сборка может заменить пару КРЕНок или серию 7805, о чем мы рассказывали в первой части статьи. При этом будет более компактной и с более высоким КПД.
Итак, мной была куплена такая сборка. Затем также купил распределительную коробку, которые используются для монтажа электропроводки в квартирах. Это и стало корпусом конвертера — зарядного устройства.

Также был присоединен и светодиод, для того чтобы контролировать, подается ли напряжение на эту «коробочку». О подключении светодиода к 12 вольтам в машине можно прочитать в статье «Как подключить светодиод к 12 вольтам». Затем все было установлено под панелью приборов, за вещевым ящиком.

Подключено к прикуривателю. Напряжение на нем появляется лишь только когда включено «зажигание», что очень удачно для меня.

Провода все также проброшены до гаджетов.

Теперь ток зарядного устройства увеличился до 4 Ампер, что пока вполне хватает.

Особенностью данного зарядного устройства является то, что оно может работать как в легковых автомобилях, где напряжение бортовой сети 12 вольт, так и в грузовых, где оно составляет 24 вольта. При этом, зарядное устройство не нуждается в какой-либо переделки и наладке.

Большой проблемой бывает отсутствие силовых трансформаторов для радиолюбительских конструкций. ТАНов, ТН, ТА и ТПП на рынке всё меньше, да и качество их оставляет желать лучшего.
В этой статье я выкладываю рекомендации по силовым трансформаторам на распространённом железе. Сразу оговорюсь, что все расчёты сделаны на низкую индукцию – от 0,7 до 1,1 Тл, в зависимости от качества стали применяемого сердечника.
Также надо отметить, что качество стали сердечников – та ещё лотерея! Мне попадались сердечники от ТС180, отличающиеся начальной магнитной проницаемостью в 5 (!!!) раз.
Более-менее стабильно качество сердечников ОСМ-0,4, ОСМ-0,63, ОСМ-1,0 , выпущенных до 82-го года. Различные ТС, ТП и пр. надо предварительно промерять.

Силовики на ТСШ170.

Наиболее распространённым является железо ТСШ170:
набор УШ30*60 мм, окно 19*53 мм.
В оригинале первичка имеет 2 витка на вольт, что даёт индукцию 1,25 Тл, что для этого железа, мягко говоря, многовато.
Вот варианты для хорошего и очень хорошего силовика на этом железе.

1. Bmax = 0,8 Тл.

А) Первичка – 675 витков проводом ПЭВ-1 диаметром 0,63 (0,67) мм, 9 слоёв по 75 витков в слое. Активное сопротивление первички – 8,2 ома.
Б) Экран из медной фольги.
В) Вторичка – 270+270+270+270 витков проводом ПЭВ-1 диаметром 0,51 (0,55) мм, 4 секции по 3 слоя по 90 витков в слое. Конец первой секции соединяем с началом четвёртой, конец второй с началом третьей. Получаем симметричные полуобмотки с активным сопротивлением 12,3 +12,3 ома.
При этом на вторичке 175+175 вольт. Можно запитывать выходные каскады на лампах ЕС36-, 6С19П, 6С41С, 6С33С.

Такой транс сможет переварить 140 вт в нагрузке, что вполне неплохо.

2. Bmax = 0,7 Тл.

Для особых гурманов

А) Первичка – 780 витков проводом ПЭВ-1 диаметром 0,59 (0,64) мм, 10 слоёв по 78 витков.
Активное сопротивление первички – 10,9 ома.
Б) Экран из медной фольги.
В) Вторичка – та же, что и в первом примере: 1080 витков проводом 0,51 (0,55) мм. Только в этом случае она выдаст 290 вольт переменки, скажем, для пары 300В или 6П42С.

Этот транс – на 120 вт, тоже терпимо.
Отмечу, что для Андрея Никитина и ещё некоторых самодельщиков я мотал на этом железе трансформаторы с индукцией 0,6 Тл – практически экстремально низкое значение Bmax!

Силовики на ТС180-2, ТС250-2М.

Это железо тоже очень широко распространено.
Посмотрим, что можно на нём изготовить.
ПЛР21*45 с окном 28*86 мм.
Габарит намотки – 11*80 мм.
Мотаем силовичок для ГУ72:
А) Первичка – 1368 витков проводом ПЭТВ-2 диаметром 0,63 (0,69) мм, 6 слоёв по 114 витков на каждой катушке. Активное сопротивление первички – 12,4 ома.
Б) Экран из медной фольги.
В) Вторичка – 3540 витков проводом ПЭВ-1 диаметром 0,4 (0,45) мм, 10 слоёв по 177 витков на каждой катушке. Активное сопротивление 49+49 ом. Со вторички снимаем 275+275 вольт переменки. Для ГУ72, ГМИ11, ГМ5Б и подобных им ламп – самое то!

Такой силовик потянет 140 вт, т.е. можно подключить ПАРУ ГУ72, с суммарным током около 250 ма. И всё это при Bmax = 0,77 Тл!

Силовик на ТСА270.

Это железо при скромном сечении ПЛ25*45 имеет гигантское окно: 40*100 мм.
Т.е. можно намотать побольше провода
Для получения индукции 0,8 Тл надо намотать 1100 витков.
Мотаем:

А) Первичка – 1104 витка проводом ПЭВ-2 диаметром 0,95 (1,03) мм, 6 слоёв по 92 витка на каждой катушке. Активное сопротивление первички – 4,8 ома.
Б) Экран из медной фольги.
В) Вторичка – 3120 витков проводом ПЭВ-2 диаметром 0,67 (0,73) мм, 12 слоёв по 130 витков в слое. Активное сопротивление – 18+18 ом.
При этом на вторичке 306+306 вольт.

Получившийся транс легко переварит 310 вт.

Силовик на ТС270-1.

У данного транса железка побольше: ПЛ25*50.
Для той же Bmax витков надо поменьше – 990.

А) Первичка – 984 витка проводом ПЭВ-2 диаметром 1,08 (1,15) мм, на каждой катушке 6 слоёв по 82 витка. Активное сопротивление первички – 3,5 ома.
Б) Экран из медной фольги.
В) Вторичка – 2600 витков проводом ПЭВ-2 диаметром 0,67 (0,73) мм, 10 слоёв по 130 витков на каждой катушке. Активное сопротивление вторички 15,6+15,6 ома. Переменное напряжение 285+285 вольт.

Этот транс стерпит и 400 вт.

Силовик на ОСМ-0,4.

Эти силовики изначально рассчитывались на безобразно высокую индукцию – 1,5 Тл.
Отсюда и все их недостатки.
При нормальной индукции – 0,8 Тл – они вполне хороши.

А) Первичка – 612 витков проводом ПЭТВ-2 диаметром 0,9 (0,96) мм, 9 слоёв по 68 витков в слое. Активное сопротивление первички – 3,85 ома.
Б) Экран из медной фольги.
В) Вторичка – 276+276+276+276 витков проводом ПЭВ-2 диаметром 0,67 (0,725) мм.
В каждой секции три слоя по 92 витка. Конец первой секции соединяется с началом четвертой, конец второй с началом третьей. Получаем две полуобмотки с активным сопротивлением 8+8 ом. Переменное напряжение на вторичке – 195+195 вольт.

Такой транс потянет 350 вт (при плотности тока в первичке 2,5 А/мм2, мощность всех вышеописанных трансов указана при 2А/мм2 ).

Силовики на ТС70, ТС80, ТС90, ТС100.

Все эти так разно именующиеся трансформаторы имеют в основе железо ПЛМ22*32 с окном 22*60 мм. Габарит намотки 9*54 мм.
Железо у них, к счастью, очень неплохое и стабильное по параметрам.
Можно считать их на Bmax = 1 Тл.

А) Первичка – 1470 витков проводом ПЭВ-2 диаметром 0,45 (0,51) мм, 7 слоёв по 105 витков на каждой катушке.

Активное сопротивление первички – 21,8 ома.
Б) Экран из тонкой медной фольги.
В) Вторичка – 2800 витков проводом ПЭТВ-2 диаметром 0,335 (0,385) мм, 10 слоёв по 140 витков на каждой катушке. Активное сопротивление 44+44 ома.
Напряжение на вторичке – 200+200 вольт.

Мощность такого транса – 90 вт при 2,5А/мм2 в первичке.

Силовик на Ш40*70 с окном 20*60 мм.

Габарит намотки 17*56 мм.
Как-то мне попалась целая россыпь этих трансформаторов с очень неплохим железом (Э3412, по-видимому).
Окно маловато, но кое-что уместить там можно:

А) Первичка – 413 витков проводом ПЭВ-1 диаметром 0,88 (0,94) мм, 7 слоёв по 59 витков в слое. Активное сопротивление первички – 3 ома.
Б) Экран из медной фольги.
В) Вторичка – 770 витков проводом ПЭВ-2 диаметром 0,67 (0,725) мм, 10 слоёв по 77 витков. Активное сопротивление вторички – 11,8 ома. Переменное напряжение на ней – 400 вольт.

Мощность такого транса – 335 вт.
Индукция в железе – 0,85 Тл.

Силовик на стандартном железе ШЛ20*40 с окном 20*52 мм.

Габарит намотки – 17*47 мм.
Эти трансы с трансвитовским железом также возникли у меня внезапно и в большом количестве. Железо – Э330А – 0,35 (Э3413А).
Поэтому заложил индукцию 1,1 Тл:

А) Первичка – 1120 витков проводом ПЭВ-1 диаметром 0,5 (0,55) мм, 14 слоёв по 80 витков в слое. Активное сопротивление первички – 16 ом.
Б) Экран из медной фольги.
В) Вторичка – 1952 витка проводом ПЭТВ-2 диаметром 0,335 (0,38) мм, состоит из четырёх секций по 4 слоя (по 122 витка в слое), т.е. 488+488+488+488 витков.
Коммутация, так же, как и в предыдущих случаях: конец первой секции соединяется с началом четвёртой, конец второй с началом третьей. Получаем 185+185 вольт при активном сопротивлении полуобмоток 40,6+40,6 ом.

Мощность данного трансформатора – 108 вт при плотности тока в первичке 2,5 А/мм2.

Силовик на железе ПЛ15*32 с окном 26*82 мм.

Это хорошее 100-ваттное железо (Э330А) использовалось в военных приборах. Комплектовалось очень прочными на вид (но хрупкими в реальности  ) чёрными карболитовыми катушками. Габарит намотки 10,5*76 мм.
Вот что можно на нём получить:

А) Первичка – 1876 витков проводом ПЭВ-1 диаметром 0,51 (0,56) мм, на каждой катушке 7 слоёв по 134 витка. Активное сопротивление первички – 19,2 ома.
Б) Экран из медной фольги.
В) Вторичка – 3024 витка проводом ПЭВ-1 диаметром 0,4 (0,45) мм, на каждой катушке 9 слоёв по 168 витков. Активное сопротивление вторички 32,3+32,3 ома. Переменное напряжение – 170+170 вольт.

Мощность такого трансформатора – 110 вт, Bmax = 1,1 Тл.

Силовик на железе выходника от «Прибоя».

Это железо ПЛМ25*50 с окном 42*68 мм.
Дело усугубляют крайне глупые катушки с высотой щёк всего 11 мм, хотя можно сделать и 18 мм. Поэтому делаем новые каркасы с габаритом намотки 18*64 мм.

А) Первичка – 952 витка проводом ПЭВ-1 диаметром 0,88 (0,94) мм, на каждой катушке 7 слоёв по 68 витков в слое. Активное сопротивление первички – 5,2 ома.
Б) Экран из медной фольги.
В) Вторичка – 2400 витков проводом ПЭВ-1 диаметром 0,57 (0,63) мм, 12 слоёв по 100 витков на каждой катушке. Активное сопротивление полуобмоток – 20+20 ом, переменное напряжение – 275+275 вольт.

Мощность этого трансформатора – 330 вт.
Bmax = 0,83 Тл.
Просто ПРИЯТНЫЙ транс

Напоследок – вариант на добром старом железе Э43-0,35 с большим окном.

Ш32*43 с окном 28*60 мм. Габарит намотки – 25*56 мм.
Для получения индукции 0,8 Тл нам надо намотать 921 виток.
Посмотрим, что получится:
А) Первичка – 924 витка проводом ПЭВ-2 диаметром 0,67 (0,725) мм, 12 слоёв по 77 витков в слое. Активное сопротивление первички – 8,95 ома.
Б) Экран из медной фольги.
В) Вторичка – 2592 витка проводом ПЭВ-1 диаметром 0,45 (0,51) мм, 4 секции по 6 слоёв (108 витков в слое), т.е. 648+648+648+648 витков. Коммутация: конец первой секции соединён с началом четвёртой, конец второй с началом первой. Активное сопротивление полуобмоток 36+36 ом. Напряжение – 300+300 вольт переменки.

Эти варианты помогут вам изготовить и рассчитать трансформаторы с требуемыми напряжениями на доступном железе.
Успехов!

Алексей Шалин, 16 апреля 2008 г.

Алексей Шалин

Комментарии к статье:

Добавил: валера


огромное спасибо и низкий поклон автору этой статьи алексею очень доступно и понятно для начинающих,без долгих лекций и заумных расчетов,побольше-бы таких кратких и понятных пояснений.валера.


Дата: 2019-03-28

Добавил: анатолий


Огромное спасибо автору. Очень грамотный человек. Намотал силовой транс на железе от выходника прибоя по параметрам предлагаемых в этой статье. Получился замечательный трансформатор


Дата: 2015-03-28

Добавил: ЮРИЙ


ПРЕКРАСНАЯ ИНФОРМАЦИЯ- СПАСИБО.


Дата: 2014-06-03

Добавил: Тодор Михайлов

Дата: 2013-01-17

Добавил: perhan

Дата: 2012-12-03

Добавил: Павел


Спасибо за ценную информацию, очень понравилось!


Дата: 2010-04-11

Зарядное устройство 12в аккумулятора своими руками

Это зарядное устройство я сделал для зарядки автомобильных аккумуляторов, выходное напряжение 14.5 вольт, максимальный ток заряда 6 А. Но им можно заряжать и другие аккумуляторы, например литий-ионные, так как выходное напряжение и выходной ток можно регулировать в широких пределах. Основные компоненты зарядного устройства были куплены на сайте АлиЭкспресс.

Вот эти компоненты:

  1. DC-DC понижающий преобразователь (DC-DC CC CV TC43200).
  2. Вольтметр – Амперметр.
  3. Диодный мост KBPC5010.

Еще потребуется электролитический конденсатор 2200 мкФ на 50 В, трансформатор для зарядного устройства ТС-180-2 (как распаивать трансформатор ТС-180-2 посмотрите в этой статье), провода, сетевая вилка, предохранители, радиатор для диодного моста, крокодилы. Трансформатор можно использовать другой, мощностью не менее 150 Вт (для зарядного тока 6 А), вторичная обмотка должна быть рассчитана на ток 10 А и выдавать напряжение 15 – 20 вольт. Диодный мост можно набрать из отдельных диодов, рассчитанных на ток не менее 10А, например Д242А.

Провода в зарядном устройстве должны быть толстые и короткие. Диодный мост нужно закрепить на большой радиатор. Необходимо нарастить радиаторы DC-DC преобразователя, или использовать для охлаждения вентилятор.

>Схема зарядного устройства для автомобильного аккумулятора

Защита от переполюсовки

Данное зарядное устройство не боится короткого замыкания на выходе, но при переполюсовке может выйти из строя. Для защиты от переполюсовки, в разрыв плюсового провода идущего к аккумулятору можно установить мощный диод Шоттки. Такие диоды имеют малое падение напряжения при прямом включении. С такой защитой, если перепутать полярность при подключении аккумулятора, ток протекать не будет. Правда этот диод нужно будет установить на радиатор, так как через него при заряде будет протекать большой ток.

Подходящие диодные сборки применяются в компьютерных блоках питания. В такой сборке находятся два диода Шоттки с общим катодом, их нужно будет запараллелить. Для нашего зарядного устройства подойдут диоды с током не менее 15 А.

Нужно учитывать, что в таких сборках катод соединен с корпусом, поэтому эти диоды нужно устанавливать на радиатор через изолирующую прокладку.

Необходимо еще раз отрегулировать верхний предел напряжения, с учетом падения напряжения на диодах защиты. Для этого, потенциометром напряжения на плате DC-DC преобразователя нужно выставить 14.5 вольт измеряемых мультиметром непосредственно на выходных клеммах зарядного устройства.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *